Instructions

You have 90 minutes from the start of the exam.

This exam has four problems, each with parts a and b.

You can use any books, files, or web sites that existed before the start of the exam.
You may NOT communicate with anyone during the exam.

You can use your Scala IDE, codecheck, or both, or neither.

You can turn in IDE worksheets, codecheck zips, or paper, or any mixture thereof.
Email your electronic submissions to borran.fatemeh@heig-vd.ch and copy yourself,
so you have a proof that you sent the email on time.

Divisors

You are given the function

def divisors(n: Int) = (1 to n).filter(n % _ == 0).toSet

that returns the set of divisors for a given integer.

a.

Using flatMap, write a function that, for a set of integers, yields the union of the
divisors of the elements (in other words, the numbers that divide at least one of the
elements). For example,

divisorsOfAny(Set(10, 12, 18))

is

Set(1, 2, 3, 4, 5, 6, 9, 10, 12, 18)

def divisorsOfAny(numbers: Set[Int]) : Set[Int] = ... flatMap ...

http://csl4.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcsl&problem=divisors

Using foldLeft, write a function that, for a set of integers, yields the intersection of
the divisors of the elements (in other words, the numbers that divide all of the
elements). For example,

divisorsOfAll(Set(10, 12, 18))

is

Set(1, 2)

def divisorsOfAll(numbers: Set[Int]) : Set[Int] = ... foldLeft ...

http://csl4.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcsl&problem=divisors2

mailto:borran.fatemeh@heig-vd.ch
http://cs14.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcs1&problem=divisors
http://cs14.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcs1&problem=divisors2

Structured Text

Structured text (such as HTML or XML) is made up of nodes that are either plain text or
elements. Each element has a tag and a list of child nodes. (For simplicity, we ignore
attributes.) Plain text just has a string contents.

Provide an abstract class Node and case classes Text, Elem, so that one can one define
structured text like this:

val sample = Elem("body", List(
Text("Goodbye "),
Elem("b", List(Text("cruel"))),
Text(" World")))

a. Define a method toXML of the Node class that renders a node in XML, by surrounding
element content with <tag>...</tag>. Text content is included as is. (For simplicity,
don’t escape < characters.)

For example, sample.toXML is <body>Goodbye cruel World</body>. Use
pattern matching.

http://csl4.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcsl&problem=structuredText

b. Repeat this using inheritance. Define a method toXML2 that yields the same result. It
should be an abstract method of Node.

http://csl4.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcsl&problem=structuredText2

http://cs14.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcs1&problem=structuredText
http://cs14.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcs1&problem=structuredText2

Do This And Maybe That

a) Write a function doThisAndMaybeThat that has three parameters, each a function. The first
and third function have type String => String, and the second function has type String
=> Boolean. Return a function that, when given a string, applies f1. If the result of 1, when
passed to f2, yields true, then £3 is applied to the result of £1, and that result is returned.
Otherwise, the result of 1 is returned.

For example,

val f = doThisAndMaybeThat(s => s.replace("a", ""), s => s.length <= 5,
s => s.toUpperCase)

f("macadamia") is "MCDMI"
f("mustard") is "mustrd"

http://csl4.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcsl&problem=doThisAndMaybeThat

b) Write genericDoThisAndMaybeThat as a generic function with three type parameters.
Note that the result types of the first and third function need not be the same. The result type
of £2 remains Boolean. Provide an appropriate constraint so that the result type of the
function returned by genericDoThisAndMaybeThat is the same as the result type of f1. Use
Currying so that the parameter types of £2 and f3 can be inferred.

http://csl4.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcsl&problem=doThisAndMaybeThat2

http://cs14.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcs1&problem=doThisAndMaybeThat
http://cs14.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcs1&problem=doThisAndMaybeThat2

Grades Database

Consider this database of students’ grades:

case class Student(studentId: Int, name: String, firstname: String)
case class Grade(studentId: Int, courseld: String, grade: Int)

val students :Set[Student] = Set(

Student(1, "Pit", "Brad"),
Student(2, "Cage", "Nicolas"),
Student(3, "Winslet", "Kate"),
Student (4, "Hanks", "Tom"),
Student(5, "Dicaprio", "Leonardo"),
Student(6, "Portman", "Nathalie"),
Student(7, "Kidman", "Nicole")

val grades :Set[Grade] = Set(
Grade(1, "SCALA", 5),
Grade(2, "SCALA", 4),
Grade(3, "SCALA", 6),
Grade(4, "SCALA", 3),
Grade(6, "SCALA", 1),
Grade(1, "POO", 4),
Grade(2, "POO", 6),
Grade(3, "POO", 3),
Grade(4, "POO", 4),
Grade(7, "POO", 4)

a. Using a for expression, write a query on our database: “For each student that has
taken a course, give the student's name, the course ID, and the corresponding grade.’

3

http://csl4.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcsl&problem=grades

b. Using the groupBy method and another for expression, transform the result of the
first query into a map associating each course ID with a set of names of the students
in that course.

http://csl4.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcsl&problem=grades2

http://cs14.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcs1&problem=grades
http://cs14.cs.sjsu.edu:8080/codecheck/files?repo=heigvdcs1&problem=grades2

Expected results:

Part a) Set[(String, String, Int)] = Set((Cage, SCALA,4), (Kidman,POO,4),
(Portman,SCALA,1), (Cage,POO,6), (Pitt,PO0O,4), (Hanks,SCALA,3), (Winslet,POO,3),
(Pitt, SCALA,5), (Winslet,SCALA,6), (Hanks,POO ,4)

Part b) Map(SCALA -> Set(Portman, Winslet, Pitt, Hanks, Cage), POO -> Set(Winslet,
Kidman, Pitt, Hanks, Cage)

